
www.manaraa.com

Succinct Data Structures for Flexible Text

Retrieval Systems 1

Kunihiko Sadakane

Department of Computer Science and Communication Engineering, Kyushu

University, Fukuoka, Japan.

Abstract

We propose succinct data structures for text retrieval systems supporting docu-

ment listing queries and ranking queries based on the tf*idf (term frequency times

inverse document frequency) scores of documents. Traditional data structures for

these problems support queries only for some predetermined keywords. Recently

Muthukrishnan proposed a data structure for document listing queries for arbitrary

patterns at the cost of data structure size. For computing the tf*idf scores there has

been no efficient data structures for arbitrary patterns.

Our new data structures support these queries using small space. The space is only

2/ε times the size of compressed documents plus 10n bits for a document collection

of length n, for any 0 < ε ≤ 1. This is much smaller than the previous O(n log n) bit

data structures. Query time is O(m+q logε n) for listing and computing tf*idf scores

for all q documents containing a given pattern of length m. Our data structures are

flexible in a sense that they support queries for arbitrary patterns.

Key words: Information Retrieval, Tf*idf, Succinct data structures, Suffix trees,

Inverted files

Preprint submitted to Journal of Discrete Algorithms 8 January 2006

sada
ハイライト表示

www.manaraa.com

1 Introduction

Text retrieval systems are now indispensable to search for important docu-

ments from a large collection of text documents such as Web, genome sequence,

etc. A text retrieval system stores a set of documents, and if a keyword is given

by a user, it will return a set of documents each of which contains the keyword.

This is a basic function of text retrieval systems and formulated as follows:

Problem 1 (Document Listing Problem [1]) We are given a set of k text

documents d1, d2, . . . , dk with total length n, which may be preprocessed. The

document listing query for a pattern p is to return the set of all documents in

which p is present. That is, the output is {j|dj[i..i + m − 1] = p for some i}
where m is the length of p.

Though this problem is very basic, there was no efficient data structures eli-

gible for arbitrary patterns before [1]. Traditional algorithms use the inverted

file [2] for preprocessing. It partitions documents into words and creates an

index for efficient search. As a result, it does not support the listing queries

for arbitrary patterns, which causes a loss of accuracy of search for languages

without word boundaries such as Japanese or Chinese. Muthukrishnan [1]

proposed a data structure for the document listing problem for arbitrary pat-

terns. It can perform a query in O(|p|+ q) time after O(n) time preprocessing

where |p| denotes the length of the pattern p, q is the number of documents

containing p, and n is the summation of the lengths of all documents.

Email address: sada@csce.kyushu-u.ac.jp (Kunihiko Sadakane).
1 A preliminary version of this paper appeared in the proceedings of ISAAC, LNCS

2518, pp. 14–24, 2002.

2

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

A drawback of Muthukrishnan’s data structure is its size. The size is O(n log n)

bits and in practice more than 20n bytes. On the other hand, the size of the

documents is n bytes if alphabet size is 256, and the size of the inverted file

for them is less than n bytes. Therefore the size of the data structure is not

practical. The first contribution of this paper is to develop an alternate data

structure to Muthukrishnan’s one whose size is close to the document size.

Theorem 1 After O(n) time preprocessing, the document listing problem is

solved in O(Search(p)+q·Lookup(n)) time on word RAM using a data structure

of size |CSA| + 4n + o(n) + O(k log n
k
) bits.

Note that Search(p) is the time to find a pattern p in the text collection of

total length n, Lookup(n) is the time to compute an entry of the suffix array

and its inverse array, and |CSA| is the total size of compressed texts, which

will be described in Section 2.3. These values depend on the implementation

of the compressed suffix arrays [3–7]. Normally |CSA| is smaller than n bytes,

the text size. That is, the size of the new data structure is almost the same as

the text size. If we use an implementation of the compressed suffix arrays [5],

we have the following result:

Corollary 2 After O(n) time preprocessing, the document listing problem is

solved in O(|p| + q logε n) time on word RAM using a data structure of size

O(1
ε
n(H0 + 1)) + O(k log n

k
) bits for any 0 < ε ≤ 1 if the alphabet size is

σ = polylog(n) where H0 is the order-0 entropy of the texts.

The document listing query is not enough for standard text retrieval sys-

tems because the answer contains a lot of documents from which users have

to find important documents. The most common definition of importance of

documents involves the tf*idf scores [8]. For a query for a set of patterns

3

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

p1, p2, . . . , p�, the tf*idf score of a document d is defined as
∑�

i=1 tf (pi, d) ·
idf (pi) where tf (pi, d) is the number of occurrences of pi in a document d,

idf (pi) is defined as log k
df (pi)

, k is the number of documents in the database,

and df (pi) is the number of documents in the database containing pi. The

larger the score is, the more important the document is. To compute this,

text retrieval systems use again the inverted file. As a result, scores can be

computed for only predetermined words. The second contribution of this pa-

per is to develop a succinct data structure for computing the tf*idf scores for

arbitrary patterns. The new data structure solves the following problem:

Problem 2 (TF*IDF Problem) We are given a set of k text documents

d1, d2, . . . , dk with total length n, which may be preprocessed. The TF*IDF

query tf ∗ idf (p) is to compute q = df (p), and tf (p, d) for all documents d

which contain p.

There has been no efficient data structures solving this problem for any pat-

tern even if O(n log n)-bit space is used. Our new data structure is not only

applicable to any pattern, but also space efficient.

Theorem 3 After O(n) time preprocessing, the TF*IDF problem is solved in

O(Search(p)+q·(Lookup(n)+log log q)) time on word RAM using a data struc-

ture of size 2|CSA|+ 10n + o(n) + O(k log n
k
) bits. If only df (p) is necessary,

it can be computed in O(Search(p)) time.

The query time is also expressed as O(|p| + q logε n), as in Corollary 2 using

an appropriate compressed suffix array.

The rest of the paper is organized as follows. In Section 2 we describe some

previous data structures used in our data structures. In Section 3 we propose

4

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

a succinct data structure for range minimum queries, which is of indepen-

dent interest and used to solve the above problems. In Section 4 we propose a

succinct data structure for the document listing problem. In Section 5 we pro-

pose a succinct data structure to compute tf*idf scores for arbitrary patterns.

Section 6 summarizes the results.

2 Preliminaries

2.1 Computation Models

We consider the word RAM as the computation model. The CPU has pointers

of O(lg n) bits 2 and can perform logical and arithmetic operations on two

O(lg n)-bit integers in constant time. The CPU also can read/write O(lg n)

bits of memory in constant time.

We measure the size of data structures by the number of bits used. For ex-

ample, a length-n array of integers in range [1, n] is of size n lg n bits. On the

other hand, a length-n text on alphabet A has size n lg σ bits where σ is the

alphabet size. We assume that σ is a power of two and σ = o(n). If σ = 256,

the text size is 8n bits. Normally we need O(n lg n) bits for data structures to

search the text because we use O(n) number of pointers, each of which occu-

pies O(lg n) bits. This is much larger than the text size. Therefore we want to

reduce the data structure size to O(n lg σ) or less, which is the main topic of

this paper.

2 Let lg denote the logarithm of base two.

5

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

2.2 Suffix Trees and Suffix Arrays

Let T [1..n] = T [1]T [2] · · ·T [n] be a text of length n on an alphabet A. The

j-th suffix of T is defined as T [j..n] = T [j]T [j + 1] . . . T [n] and denoted by

Tj . A substring T [1..l] is called a prefix of T . The suffix array [9] of T is an

array SA[1..n] of integers j that represent suffixes Tj . The integers are sorted

in lexicographic order of the corresponding suffixes. The suffix tree [10] of T

is a compressed trie built on all suffixes of T . Each edge has a label which is

a substring of T . The suffix tree has n leaves, and the concatenation of edge

labels on the path from the root to each leaf is coincident with a suffix Tj .

Edge labels between internal edges are represented by pointers to substrings

of T , and labels for leaves are represented by pointers to suffixes. Therefore

leaves are identical to the suffix array of T . Let leaf(i) denote the leaf that

corresponds to the i-th suffix in lexicographic order, which is TSA[i].

Any pattern p in T is represented uniquely by a prefix of a path from the root

node to a node v of the suffix tree of T . Therefore the existence of p in T

is determined in O(|p|) time. On the other hand, this is solved in O(|p| lg n)

time using the suffix array. The size of the suffix tree is O(n lg n) bits, and

that of the suffix array is exactly n lg n bits. Both are not linear to the text

size n log σ. They can be constructed in O(n) time [11].

If we are given a set of k text documents d1, d2, . . . , dk, we concatenate them

into a text T and construct the generalized suffix tree [12] for T , denoted by

GST . The GST is the compressed trie of all suffixes of the k documents. To

make any leaf have a unique label, we append a unique terminator for each

documents, that is, we let T = d1$1d2$2 · · ·dk$k. We assume that $1 < $2 <

6

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

ba

11 9 1 3 7 10 5 2 6

c

$3 $1

$2

b
a
$3

c
b
$1

a
$3

c
b
$2

b

$1 $2

acb$1bcb$2aba$3

1 2 3 5 6 7 91011

SA 11 9 1 3 7 10 5 2 6

i 1 2 3 4 5 6 7 8 9

d1 d2 d3

T:

Fig. 1. The generalized suffix tree and the suffix array for “acb$1bcb$2aba$3”

· · · < $k, and $k is smaller than any character in A. Figure 1 shows an example

of the generalized suffix tree and the suffix array of the concatenated text.

2.3 Succinct Data Structures

We use several basic data structures to reduce the size of the data structure for

the document problems. A basic one is the succinct representation of trees [13].

An n-node tree is represented by a nested parenthesis sequence P of length

2n. The sequence is defined from the tree as follows. We traverse the tree from

the root in a depth-first manner. When we go down an edge we put an open

parenthesis ‘(,’ and when we go up an edge we put a close parenthesis ‘)’ to P .

Then a traversal on the tree can be simulated by a traversal on the sequence.

An example of the sequence is depicted in Fig. 3.

To make the traversal quick, we use auxiliary data structures that support

7

sada
ハイライト表示

www.manaraa.com

the following functions. The function rankp(P, i) returns the number of occur-

rences of pattern p up to the position i in a string P , where p is for example

‘().’ The function selectp(P, i) returns the position of i-th occurrence of pat-

tern p. Both functions take constant time using auxiliary data structures of

size o(n) bits [14]. By using these data structures, tree traversal operations

such as finding the parent, the first child, the next sibling, and computing the

number of leaves below a node, are done in constant time on word RAM.

The (generalized) suffix tree and the suffix array can be compressed. We use

the compressed suffix array [3] and its variations. The suffix array is com-

pressed from n lg n bits to O(n log σ) bits. Therefore the size of the com-

pressed suffix array is proportional to the text size. Each element SA[i] is

decompressed in polylog(n) time. There are several different implementations

of the compressed suffix arrays, but they support the following operations:

• Given i, compute SA[i] and SA−1[i] in Lookup(n) time,

• Given a pattern p, compute the interval [l, r] of the suffix array in which pre-

fixes of all suffixes in the interval match with the pattern, that is, T [SA[i]..SA[i]+

|p| − 1] = p for any i ∈ [l, r], in Search(p) time.

Note that by using compressed suffix arrays we can extract any portion of the

text. This means that we need not to store the text itself. Table 1 summarizes

variations of compressed suffix arrays.

We also use a succinct data structure for computing lowest common ancestor

(lca) between two nodes of a tree [5], which is based on the algorithm of

Bender and Farach-Colton [16]. Let lca(v, w) be the lowest common ancestor

of nodes v and w. After O(n) time preprocessing to an n-node tree, lca(v, w)

is computed in constant time for any nodes v and w using a data structure

8

sada
ハイライト表示

www.manaraa.com

Table 1

The size and query time of compressed suffix arrays. ε is an arbitrary constant such

that 0 < ε ≤ 1. σ is the alphabet size of the text. Hk is the order-k entropy of the

text.

size (bits) Lookup(n) Search(p) references

O(1
ε n lg σ) O(logε

σ n) O(|p|/ logσ n + logε
σ n) [3]

O(1
ε n(H0 + 1)) O(lgε n) O(|p|) [5] (σ = polylog(n))

nHk + O(n/ lgε n) O(lg1+ε n) O(|p|) [15] (σ = polylog(n))

O(nHk lgγ n + n/ lgε n) O(1) O(|p|) [7] (σ = polylog(n), γ > 0)

of size 2n + o(n) bits. In this paper we propose a data structure for range

minimum queries on arbitrary arrays using the data structure for lca queries.

3 Succinct Data Structure for Range Minimum Query

In this section we propose a succinct data structure for range minimum queries

on arbitrary arrays, which will be used in the proposed algorithms. First we

define the problem.

Problem 3 (Range Minimum Query) Given indices l and r of an array

C[1, n], the range minimum query RMQC(l, r) returns the index of the smallest

element in the subarray C[l..r]. If there is a tie-breaking we choose the leftmost

one.

It is known that a query can be done in constant time using O(n log n)-bit

space after O(n) time preprocessing [16]. Here we propose a succinct data

structure, which is summarized as follows:

9

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

Theorem 4 For an array C of n elements, a range minimum query is done

in constant time using a data structure of size 4n + o(n) bits after O(n) time

preprocessing.

Note that we do not store the array C itself. Therefore we can find only the

index i of the minimum element C[i].

The range minimum query is reduced to finding the lca between two nodes

in a tree [16]. Consider an imaginary binary tree storing pairs (i, C[i]) for all

1 ≤ i ≤ n, which will be converted into another data structure without the

array C. The root node of the tree stores (x, C[x]) where C[x] is the minimum

in C[1..n]. If there are more than one minimum values, we determine the

order by their indices. Therefore there always exists a unique minimum. The

left subtree stores (i, C[i]) for 1 ≤ i ≤ x − 1 and the right subtree stores

those for x + 1 ≤ i ≤ n recursively. This tree is called a Cartesian tree and

is constructed in O(n) time. Then RMQC(l, r) is equal to the index stored in

the lca between two nodes storing C[l] and C[r]. Figure 2 shows an example

of the Cartesian tree for array C. Each pair (i, C[i]) is stored in a node where

i is put in the upper half of the node, and C[i] is in the lower.

We consider succinct representations for this tree. We can encode it in 2n bits

by a parenthesis sequence P . See also Figure 2 for an example. Sadakane [5]

showed that for an n-node tree encoded in the parenthesis sequence, lca is

computed in constant time on word RAM using an auxiliary data structure of

o(n) bits provided that the preorders of the nodes are given. Here the preorder

of a node is defined as the number of nodes visited before arriving the node in

the preorder traversal of the tree. However, this data structure is not directly

applied for succinct data structures for range minimum queries because we

10

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

9
7

8
47

5

6
2

5
-2

4
3

3
-1

2
1

1
-3

(((()())((()()))))P

C −3 1 −1 3 −2 2 5 4 7

1
-3

5
-2

3
-1

2
1

4
3

6
2

8
7

7
5

9
7

Fig. 2. The Cartesian tree and its balanced parenthesis representation of array C

cannot store the preorders for all nodes which require O(n lg n) bits. Instead

we use a different tree so that the preorder of the node for C[i] is computed

from i in constant time.

The reason that the preorder of a node cannot be computed in constant time

in the original Cartesian tree is that a node of the tree may not have the

left or the right child. If we store C[i] in internal nodes and encode the tree

into the parenthesis sequence, we cannot distinguish between a node having

only the left child and that having only the right child. For example, the node

with index 6 in Figure 2 has only the right child. However in the parenthesis

sequence we do not know whether the node has the right child or the left child.

To solve the problem Munro and Raman [13] use an isomorphism between a

binary tree and an ordered tree. Although their method can encode the tree in

2n+o(n) bits, it is not applicable to our problem because we cannot compute

the lca of nodes.

In this paper we propose another representation of a binary tree. We change

the tree into ternary by adding a new leaf node to each node. For an internal

11

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

7

94

8

5

7
2

6
−2

5

3

4−1

3

1

2

−3

1

1 25 3 4 6 78 93 3 531 2 4 5 6 7 8 8−3 1 −1 3 −2 2 5 4 7

(()(((())()(()))()(()((())()(())))))P
01012343232343212123234543434543210P’

x yz f x’ y’z’
f’

Fig. 3. A new representation of array C and its parenthesis encoding.

node of the original tree, the new leaf is added between the left and the right

children. Then we can distinguish them and compute lca between nodes. Fur-

thermore, we can compute the inorder of each leaf from the sequence because

for each leaf its preorder and inorder coincide. We will describe the details.

We temporarily construct the Cartesian tree for C and add new nodes to it.

We add a new leaf to each internal node as a middle child. Let us denote the

tree by M . Each internal node stores the index i, and its middle child stores

C[i]. Then the tree M is represented in 4n bits because it has n internal nodes

and n leaves. Each node is represented by the position of an open parenthesis

in P . Figure 3 shows an example.

To solve a range minimum query RMQC(l, r) it is necessary to convert an

index i to the element C[i] into the position e of the open parenthesis in

P of the leaf whose parent has label i. Because each leaf has no child, it is

represented by () in P . Moreover, because leaves appear in P in the order of

12

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

depth-first search, the order of the leaves in P is determined by the parents’

labels. Therefore e and i are converted to each other as follows:

e = select()(P, i)

i = rank ()(P, e).

To find the lca between two nodes in a parenthesis sequence, we consider an

imaginary integer array P ′. We define P ′[i] = rank((P, i)− rank)(P, i)− 1. In

other words, P ′[i] is the depth of a node with preorder i. We do not store P ′

explicitly because each value of P ′ is computed in constant time from P and

an auxiliary data structure of size o(n) bits [13]. Then an lca query is reduced

to range minimum query on P ′ where the difference between two adjacent

elements is always 1 or −1. We call this query RMQ±
P ′. Now we reduced the

range minimum query on C with n elements into RMQ±
P ′ with 2n elements,

which is solved in constant time using 4n + o(n) bits [5].

The index i of the minimum element C[i] in C[l..r] can be found in constant

time as follows:

(1) x = select()(P, l), y = select()(P, r)

(2) z = RMQ±
P ′(x, y)

(3) if P [z + 2] = ‘)’ then f = z + 1 else f = z − 1

(4) i = rank ()(P, f).

Step 3 finds the position f of the open parenthesis that represents the middle

leaf. P [z + 1] is the open parenthesis of a child. If it is a leaf P [z + 2] is the

close parenthesis, otherwise P [z +2] is the open parenthesis of its child. In the

latter case P [z] is the close parenthesis and P [z − 1] is the open parenthesis

of the leaf.

13

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

For example, to find the minimum in C[4..7] we first compute positions x and

y of ‘()’ in P corresponding to C[4] and C[7] (see Fig. 3). Then we compute

the position z of the minimum element in P ′[x..y]. In this case P [z] represents

the close parenthesis of the left child of C[5] and P [z + 1] represents the open

parenthesis of the middle child. Therefore the index i of the minimum element

C[i] is equal to the number of ‘()’ in P [1..z + 1]. In another example, to find

the minimum in C[8..9], we find the position z′ of the minimum element in

P ′[x′..y′] where x′ and y′ correspond to C[8] and C[9], respectively. Then P [z′]

is the close parenthesis of the middle child of C[8].

4 Succinct Data Structure for the Document Listing Problem

We propose a succinct data structure for the Problem 1 (Document Listing

Problem), whose properties are summarized in Theorem 1. Our data structure

is based on Muthukrishnan’s original one. Therefore we first describe it, then

we give our new data structure and query algorithms.

4.1 Original Algorithm for Document Listing Problem

The original algorithm and data structure for the document listing problem [1]

is as follows. Two integer arrays C[1..n] and D[1..n] are defined as follows. Let

us define D[i] = c if the suffix TSA[i] is contained in document dc, and define

C[i] = j where j is the largest index such that j < i and D[j] = D[i]. If such j

does not exist C[i] = −1. To store the set of documents, the generalized suffix

tree GST is used. An example of the arrays is shown in Figure 4. The GST

for this example is shown in Figure 1. These data structures are constructed

14

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

acb$1bcb$2aba$3

1 2 3 5 6 7 91011

SA 11 9 1 3 7 10 5 2 6

D 3 3 1 1 2 3 2 1 2

C −3 1 −1 3 −2 2 5 4 7

i 1 2 3 4 5 6 7 8 9

d1 d2 d3

T:

Fig. 4. Original data structure for document listing problem.

in O(n) time.

For a query for a pattern p we first find the interval [l, r] of the lexicographic

order of suffixes which match with p by using GST . Then we call DLP (l, l, r)

shown in Fig. 5. By using this algorithm, we can output document ID’s with-

out duplication in O(q) time where q is the size of output, that is, the number

of documents containing p. The correctness of the algorithm is explained as

follows. The array C is regarded as a set of linked lists each of which corre-

sponds to a document. Therefore we enumerate the first element of each list

which appears in C[l..r]. To do so, we find the minimum C[x] in C[l..r] in

constant time. If C[x] ≥ l, C[x] is not the first element of a list and thus the

algorithm terminates, otherwise outputs D[x] and continues to find the mini-

Procedure DLP (s, l, r)

x := RMQC(l, r)

if C[x] < s then

output D[x]

DLP (s, l, x − 1)

DLP (s, x + 1, r)

Fig. 5. Pseudo code for original document listing algorithm.

15

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

mum in C[l..x − 1] and C[x + 1..r] recursively. Because the number of times

that range minimum query is performed is at most 2q, the algorithm runs in

O(|p| + q) time. The space complexity is O(n lg n) bits.

4.2 New Algorithm

We store the arrays succinctly. The value D[i] is calculated in constant time

from the suffix array SA[i] using additional O(k log n
k
) bit space as follows. We

consider the ordered set D′ of positions of the first character of each document

di (i = 1, 2, . . . , k). Then D[i] is equal to the number of elements in D′ which

are no greater than SA[i], that is, D[i] = |{x ∈ D′|x < SA[i]}|. Therefore

computing D[i] is a kind of rank query and done in constant time using a

data structure of size O(k log n
k
) bits [17] if we know SA[i]. Let D′(SA[i])

denote D[i]. The computation of SA[i] takes Lookup(n) time by using the

compressed suffix array. For range minimum queries in the array C we use the

data structure in Section 3 which has size 4n + o(n) bits. We sightly change

the definition of the array C. We define C[i] = −D[i] if D[i] is the leftmost

one among the same numbers. The new definition is just for convenience of

making the values unique.

Our algorithm for the document listing query list(p) is similar to the orig-

inal [1]. Instead of using the GST , we use the compressed suffix array to

compute the interval [l, r] such that suffixes TSA[l], TSA[l+1], . . . , TSA[r] have p

as their prefixes, which is done in Search(p) time.

In the original algorithm the array C is used to avoid outputting a duplicate

document ID. However we cannot use the same algorithm because the values

16

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

Procedure CDLP (l, r)

if l > r return

x := RMQC(l, r)

d := D′(SA[x])

if V [d] = 0 then

output d

V [d] := 1

CDLP (l, x − 1)

CDLP (x + 1, r)

Fig. 6. Pseudo code for new document listing algorithm.

of C are not available. Instead we use a simple marking algorithm. To check

the duplication of the output, we use a bit-vector V [1..k]. In the preprocess

we set V [i] = 0 for i = 1, 2, . . . , k, which takes O(k) = O(n) time. In a query

list(p) we check whether V [x] = 1 or 0 before outputting D[x]. If V [x] =

0, we output D[x] and set V [x] = 1. After outputting all document ID’s,

we set V [x] = 0 for each x which was output. Therefore the query is done

in O(Search(p) + q · Lookup(n)) time where q is the output size. The new

algorithm is described in Fig. 6. Note that this algorithm requires q log k bits

of temporary space to store the set of document ID’s which are output.

Let us compute the size of the data structure. The array D′ is encoded in

O(k log n
k
) bits. The data structure for range minimum queries on the array C

is represented in 4n + o(n) bits. The vector V has size k bits. Therefore the

total is |CSA|+ 4n + o(n)+ O(k log n
k
) bits. Note that |CSA| = 1

ε
nH0 + O(n)

bits to obtain O(|p| + q logε n) time queries (see Section 2.3).

17

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

5 Succinct Data Structure for TF*IDF Problem

In this section we propose a succinct data structure for the Problem 2 (TF*IDF

Problem). Inverted files can solve the problem for only predetermined patterns,

whereas ours can solve for any pattern.

5.1 Data Structure for computing tf (p, d)

We construct the compressed suffix array CSAd for each document d to which

a terminator $d is appended. Then the term frequency tf (p, d) is obviously

computed in O(Search(p)) time by using CSAd as follows. Let [l, r] be the

interval that corresponds to p in SAd. Then tf (p, d) = r − l + 1.

A naive algorithm to compute tf (p, d) for all documents d containing p will

be as follows. We first enumerate all d by using the document listing query,

and compute tf (p, d) for each d. However, this is not efficient because it takes

O(q · Search(p)) time where q is the number of documents containing p. We

give an algorithm to compute all the scores in O(Search(p) + q · (Lookup(n) +

log log q)) time.

In addition to the compressed suffix array for each document, we use the one

for the concatenation of all the documents, denoted by CSA, which is used

for the document listing problem. We first find the interval [l, r] in CSA in

O(m) time. Then for each distinct d ∈ D[l, r], we compute the leftmost and

the rightmost indices i, j ∈ [l, r] such that D[i] = D[j] = d as follows. The

leftmost indices of all distinct values are computed by the same algorithm

as the document listing problem. We next find the rightmost indices j. We

18

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

use another data structure which is similar to C. The array C is regarded

as a set of linked lists for each document. We define another array C′ that

represents linked lists in the opposite direction. We define C′[i] = j where j is

the smallest index such that i < j and D[j] = D[i]. We define C′[i] = n+D[i]

if such j does not exist. Then we can enumerate the rightmost indices j of

all distinct values in D[l, r] by using range maximum queries to C′ which are

solved by using range minimum queries after negating all the values in C′.

The value of tf (p, d) is equal to the number of d in D[l, r]. Instead of counting

it directly, we use the compressed suffix array CSAd for the document d.

Suffixes of document d which match with p are in a consecutive region of the

suffix array SAd, and they appear in the suffix array SA for T in the same

relative order in SAd. Therefore the leftmost and the rightmost suffixes for p

in SAd are identical with those in SA. From this observation, we can compute

tf (p, d) as follows.

Let i and j be the leftmost and the rightmost index of d in D[l..r] computed

by using C and C ′, respectively. We compute x = SA[i] and y = SA[j] using

CSA. Then we convert them into those in document d, say x′ and y′ as follows.

We compute the predecessor z of x in D′ in constant time [17], which is the

position of the first character of d in T . Then x′ = x− z +1 and y′ = y− z +1

hold. Next we compute i′ = SA−1
d [x′] and j′ = SA−1

d [y′] in O(Lookup(nd))

time by using CSAd where nd < n is the length of the document. Finally we

have tf (p, d) = j′ − i′ + 1.

The size of the data structure becomes as follows. The size of the compressed

suffix array for T is denoted by |CSA|. The total of the size of the compressed

suffix array for each document is roughly equal to |CSA|. The sizes of arrayc

19

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
取り消し線

sada
置換するテキスト
s

sada
ハイライト表示

www.manaraa.com

C and C ′ are 4n + o(n) bits and 4(n + k) + o(n) bits, respectively. The size of

D′ is O(k log n
k
). Therefore the total is 2|CSA| + 8n + o(n) + O(k log n

k
) bits.

Note that the order of the output of the range minimum query and that of

the range maximum query will be different. Therefore we need to sort the

document ID’s. We use an O(q log log q) time sorting algorithm of Andersson

et al. [18]. Therefore we have the following:

Lemma 5 The term frequency tf (p, d) is computed in O(Search(p)) time, and

term frequencies for all q documents containing a pattern p are computed in

O(Search(p) + q · (Lookup(n) + log log q)) time using a data structure of size

2|CSA| + 8n + o(n) + O(k log n
k
) bits.

5.2 Data Structure for computing df (p)

The document frequency df (p) is computed in O(Search(p) + q · Lookup(n))

time by using the data structure for the document listing problem. However

this is too slow if we want only the value of df (p). Here we propose an algorithm

to compute it in O(Search(p)) time using CSA and a data structure of size at

most 2n+o(n) bits. We use Hui’s algorithm [19] and modify its data structure

to reduce the size.

Hui’s algorithm works as follows. In each internal node v of GST the original

algorithm stores a number u(v) which represents how many “duplicate” suf-

fixes from the same document occur in v’s subtree. More precisely, let nd(v)

be the number of leaves from document d in the subtree rooted at v. We have

u(v) =
∑

d:nd(v)>0(nd(v) − 1). Let l and r be the indices of the leftmost and

the rightmost leaves in the subtree rooted at v. Then (r − l + 1)− u(v) is the

20

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

number of distinct document ID’s in the subtree rooted at v, which is df (p)

if v corresponds to p.

Let Ld
1, L

d
2, . . . , L

d
m be the leaves of the subtree rooted at v which are from

document d and sorted in lexicographic order. Then the value nd(v)−1 is equal

to the number of times that lca(Ld
i , L

d
i+1) (1 ≤ i ≤ m − 1) is in the subtree.

Therefore for each node w of GST we compute the summation h(w) of the

number of times that lca(Ld
i , L

d
i+1) = w for all d. This is done in O(n) time by

using constant time lca queries. Then u(v) =
∑

d:nd(v)>0(nd(v)−1) =
∑

[h(w) :

w is in the subtree of v]. Then the values of u(v) for all nodes are computed

in linear time by a bottom-up traversal of GST . Finally we have df (p) =

(r − l + 1)− u(v) and idf (p) = log k
df (p)

, where v is the node corresponding to

p.

The above data structure has size O(n log n) bits. We reduce the size to 2n +

o(n) bits. We temporarily construct a GST ′ of T in which all internal nodes

have two children, that is, any internal node of GST which has c > 2 children

is divided into c − 1 nodes each of which has two children (compare Fig. 7

with Fig. 1). Then we compute h(w) for each node in GST ′ in linear time.

Instead of storing u(v) we store h(v) for all internal nodes in an array H[1..n−
1] in which the values are arranged in inorder of nodes. Let i be the inorder

of a node v. Then v = lca(leaf(i), leaf(i + 1)) holds and we store h(v) in H[i].

The value u(v) is equal to the summation of h(w) for all descendants of v.

Because h(w)’s are stored in inorder, u(v) is equal to the summation of H[l..r−
1] where l and r are the lexicographic orders of suffixes stored in the leftmost

and the rightmost leaves of v, respectively. If v is the node corresponding to

a pattern p, the indices l and r are calculated in Search(p) time by using the

21

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

SA 11 9 1 3 7 10 5 2 6

b

a

3 3 1 1 2 3 2 1 2

c

d

D

e

f

g

h

3

1, 3

2

1, 2

01 1 001 1 01 1 001 1H’
a b c d e f g h

Fig. 7. Data structure for computing df (p). Numbers below an internal node w show

the values of d such that lca(Ld
i , L

d
i+1) = w for some i.

compressed suffix array of T .

The value h(v) is encoded as unary code in a sequence H′, that is, encoded

as h(v) zeroes followed by a one, for example 0 is encoded as 1 and 2 as 001.

Then u(v) is computed as follows:

x = select1(H
′, l − 1) + 1

y = select1(H
′, r)

u(v)= rank 0(H
′, y) − rank 0(H

′, x)

where l and r are indices defined above. Therefore u(v) is computed in constant

time. The size of the bit-vector is at most 2n−d bits because there are n ones

and at most n − d zeroes. Thus we have the following.

Lemma 6 Given the interval of the suffix array of T that corresponds to a

pattern p, the document frequency df (p) can be computed in constant time

using a data structure of size 2n + o(n) bits.

22

www.manaraa.com

For the TF*IDF problem, we use both data structures in Sections 5.1 and 5.2.

Therefore the space is 2|CSA| + 10n + o(n) + O(k log n
k
) bits, which proves

the Theorem 3.

6 Concluding Remarks

We have extended the data structure for the document listing problem so

that it can be used to compute tf*idf scores. The size of the data structure

is proportional to the text size, which is an improvement from the previous

algorithm using O(n log n) bit space. The size of the data structure is 2|CSA|+
10n + o(n) + O(k log n

k
) bits where |CSA| is the size of the compressed suffix

array for a collection of documents, and it can be smaller than the size of the

documents if the parameter is set to be ε = 1. Therefore the size of the whole

data structure is about three times larger than inverted files. Though the time

complexities are at most O(log n) times larger than that by using inverted

files, our data structures support queries for any pattern. The query time is

further improved by increasing the size in constant factor.

Acknowledgments

The author would like to thank Prof. Takeshi Tokuyama of Tohoku University

and Dr. Jesper Jansson of Kyushu University, and anonymous referees for

their valuable comments. The work of the author was supported in part by

the Grant-in-Aid of the Ministry of Education, Science, Sports and Culture

of Japan.

23

sada
ハイライト表示

sada
ハイライト表示

sada
ハイライト表示

www.manaraa.com

References

[1] S. Muthukrishnan, Efficient Algorithms for Document Retrieval Problems, in:

Proc. ACM-SIAM SODA, 2002, pp. 657–666.

[2] A. Blumer, J. Blumer, D. Haussler, R. McConnell, A. Ehrenfeucht, Complete

inverted files for efficient text retrieval and analysis, Journal of the ACM 34 (3)

(1987) 578–595.

[3] R. Grossi, J. S. Vitter, Compressed Suffix Arrays and Suffix Trees with

Applications to Text Indexing and String Matching, SIAM Journal on

Computing 35 (2) (2005) 378–407.

[4] R. Grossi, A. Gupta, J. S. Vitter, Higher Order Entropy Analysis of Compressed

Suffix Arrays, in: DIMACS Workshop on Data Compression in Networks and

Applications, 2003, pp. 841–850.

[5] K. Sadakane, Succinct Representations of lcp Information and Improvements in

the Compressed Suffix Arrays, in: Proc. ACM-SIAM SODA, 2002, pp. 225–232.

[6] K. Sadakane, New Text Indexing Functionalities of the Compressed Suffix

Arrays, Journal of Algorithms 48 (2) (2003) 294–313.

[7] P. Ferragina, G. Manzini, Indexing compressed texts, Journal of the ACM 52 (4)

(2005) 552–581.

[8] G. Salton, A. Wong, C. S. Yang, A Vector Space Model for Automatic Indexing,

Communications of the ACM 18 (11) (1975) 613–620.

[9] U. Manber, G. Myers, Suffix arrays: A New Method for On-Line String Searches,

SIAM Journal on Computing 22 (5) (1993) 935–948.

[10] P. Weiner, Linear Pattern Matching Algorihms, in: Proceedings of the 14th

IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.

24

www.manaraa.com

[11] M. Farach, Optimal Suffix Tree Construction with Large Alphabets, in: 38th

IEEE Symp. on Foundations of Computer Science, 1997, pp. 137–143.

[12] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University

Press, 1997.

[13] J. I. Munro, V. Raman, Succinct Representation of Balanced Parentheses and

Static Trees, SIAM Journal on Computing 31 (3) (2001) 762–776.

[14] J. I. Munro, V. Raman, S. S. Rao, Space Efficient Suffix Trees, Journal of

Algorithms 39 (2) (2001) 205–222.

[15] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Succinct Representation

of Sequences, Technical Report TR/DCC-2004-5, Dept. of Computer Science,

Univ.

of Chile, ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/sequences.ps.gz

(Aug. 2004).

[16] M. Bender, M. Farach-Colton, The LCA Problem Revisited, in: Proceedings of

LATIN, LNCS 1776, 2000, pp. 88–94.

[17] R. Raman, V. Raman, S. S. Rao, Succinct Indexable Dictionaries with

Applications to Encoding k-aray Trees and Multisets, in: Proc. ACM-SIAM

SODA, 2002, pp. 233–242.

[18] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in Linear Time?, in:

ACM Symposium on Theory of Computing, 1995, pp. 427–436.

[19] L. Hui, Color Set Size Problem with Applications to String Matching, in: Proc.

of the 3rd Annual Symposium on Combinatorial Pattern Matching (CPM’92),

LNCS 644, 1992, pp. 227–240.

25

sada
ハイライト表示

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

